Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cells ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534344

RESUMO

Intrauterine growth restriction (IUGR) and being small for gestational age (SGA) are two distinct conditions with different implications for short- and long-term child development. SGA is present if the estimated fetal or birth weight is below the tenth percentile. IUGR can be identified by additional abnormalities (pathological Doppler sonography, oligohydramnion, lack of growth in the interval, estimated weight below the third percentile) and can also be present in fetuses and neonates with weights above the tenth percentile. There is a need to differentiate between IUGR and SGA whenever possible, as IUGR in particular is associated with greater perinatal morbidity, prematurity and mortality, as well as an increased risk for diseases in later life. Recognizing fetuses and newborns being "at risk" in order to monitor them accordingly and deliver them in good time, as well as to provide adequate follow up care to ameliorate adverse sequelae is still challenging. This review article discusses approaches to differentiate IUGR from SGA and further increase diagnostic accuracy. Since adverse prenatal influences increase but individually optimized further child development decreases the risk of later diseases, we also discuss the need for interdisciplinary follow-up strategies during childhood. Moreover, we present current concepts of pathophysiology, with a focus on oxidative stress and consecutive inflammatory and metabolic changes as key molecular mechanisms of adverse sequelae, and look at future scientific opportunities and challenges. Most importantly, awareness needs to be raised that pre- and postnatal care of IUGR neonates should be regarded as a continuum.


Assuntos
Retardo do Crescimento Fetal , Doenças do Recém-Nascido , Gravidez , Feminino , Criança , Recém-Nascido , Humanos , Recém-Nascido Pequeno para a Idade Gestacional/fisiologia , Recém-Nascido Prematuro , Feto , Estresse Oxidativo
2.
J Am Heart Assoc ; 13(3): e029427, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293915

RESUMO

BACKGROUND: The right ventricle (RV) is at risk in patients with complex congenital heart disease involving right-sided obstructive lesions. We have shown that capillary rarefaction occurs early in the pressure-loaded RV. Here we test the hypothesis that microRNA (miR)-34a, which is induced in RV hypertrophy and RV failure (RVF), blocks the hypoxia-inducible factor-1α-vascular endothelial growth factor (VEGF) axis, leading to the attenuated angiogenic response and increased susceptibility to RV failure. METHODS AND RESULTS: Mice underwent pulmonary artery banding to induce RV hypertrophy and RVF. Capillary rarefaction occurred immediately. Although hypoxia-inducible factor-1α expression increased (0.12±0.01 versus 0.22±0.03, P=0.05), VEGF expression decreased (0.61±0.03 versus 0.22±0.05, P=0.01). miR-34a expression was most upregulated in fibroblasts (4-fold), but also in cardiomyocytes and endothelial cells (2-fold). Overexpression of miR-34a in endothelial cells increased cell senescence (10±3% versus 22±2%, P<0.05) by suppressing sirtulin 1 expression, and decreased tube formation by 50% via suppression of hypoxia-inducible factor-1α, VEGF A, VEGF B, and VEGF receptor 2. miR-34a was induced by stretch, transforming growth factor-ß1, adrenergic stimulation, and hypoxia in cardiac fibroblasts and cardiomyocytes. In mice with RVF, locked nucleic acid-antimiR-34a improved RV shortening fraction and survival half-time and restored capillarity and VEGF expression. In children with congenital heart disease-related RVF, RV capillarity was decreased and miR-34a increased 5-fold. CONCLUSIONS: In summary, miR-34a from fibroblasts, cardiomyocytes, and endothelial cells mediates capillary rarefaction by suppressing the hypoxia-inducible factor-1α-VEGF axis in RV hypertrophy/RVF, raising the potential for anti-miR-34a therapeutics in patients with at-risk RVs.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , MicroRNAs , Rarefação Microvascular , Criança , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , 60489 , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rarefação Microvascular/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Direita , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiopatias Congênitas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38064241

RESUMO

RATIONALE: The strongest genetic risk factor for childhood-onset asthma, the 17q21 locus, is associated with increased viral susceptibility and disease-promoting processes. OBJECTIVES: To identify biological targets underlying the escalated viral susceptibility associated with the clinical phenotype mediated by the 17q21 locus. METHODS: Genome-wide transcriptome analysis of nasal brushes from 261 children (78 healthy, 79 preschool wheezers, 104 asthmatics) within the ALLIANCE cohort, with a median age of 10.0 [1.0-20.0], was conducted to explore the impact of their 17q21 genotype (SNP rs72163891). Concurrently, nasal secretions from the same patients and visits were collected, and high-sensitivity mesoscale technology employed to measure IFN-protein levels. MEASUREMENTS AND MAIN RESULTS: This study revealed that the 17q21 risk allele induces a genotype- and asthma/wheeze phenotype-dependent enhancement of mucosal GSDMB expression as the only relevant 17q21-encoded gene in children with preschool wheeze. Elevated GSDMB expression correlated with the activation of a type-1 pro-inflammatory, cell-lytic immune, and NK signature, encompassing key genes linked to an IFN-type-II-signature (IFNG, CXCL9, CXCL10, KLRC1, CD8A, GZMA). Conversely, there was a reduction in IFN-type-I and type-III expression signatures at both mRNA and protein levels. CONCLUSIONS: This study demonstrates a novel disease-driving mechanism induced by the 17q21 risk allele. Increased mucosal GSDMB expression is associated with a cell-lytic immune response coupled with compromised airway immunocompetence. These findings suggest that GSDMB-related airway cell death and perturbations in the mucosal IFN signature account for the increased vulnerability of 17q21 risk allele carriers to respiratory viral infections during early life, opening new options for future biological interventions.

4.
Inflamm Regen ; 43(1): 52, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37876024

RESUMO

Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10-/-) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10-/- mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10-/- mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.

5.
J Lipid Res ; 63(11): 100283, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152882

RESUMO

Intrauterine growth restriction (IUGR) predisposes to chronic kidney disease via activation of proinflammatory pathways, and omega-3 PUFAs (n-3 PUFAs) have anti-inflammatory properties. In female rats, we investigated 1) how an elevated dietary n-3/n-6 PUFA ratio (1:1) during postnatal kidney development modifies kidney phospholipid (PL) and arachidonic acid (AA) metabolite content and 2) whether the diet counteracts adverse molecular protein signatures expected in IUGR kidneys. IUGR was induced by bilateral uterine vessel ligation or intrauterine stress through sham operation 3.5 days before term. Control (C) offspring were born after uncompromised pregnancy. On postnatal (P) days P2-P39, rats were fed control (n-3/n-6 PUFA ratio 1:20) or n-3 PUFA intervention diet (N3PUFA; ratio 1:1). Plasma parameters (P33), kidney cortex lipidomics and proteomics, as well as histology (P39) were studied. We found that the intervention diet tripled PL-DHA content (PC 40:6; P < 0.01) and lowered both PL-AA content (PC 38:4 and lyso-phosphatidylcholine 20:4; P < 0.05) and AA metabolites (HETEs, dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acids) to 25% in all offspring groups. After ligation, our network analysis of differentially expressed proteins identified an adverse molecular signature indicating inflammation and hypercoagulability. N3PUFA diet reversed 61 protein alterations (P < 0.05), thus mitigating adverse IUGR signatures. In conclusion, an elevated n-3/n-6 PUFA ratio in early diet strongly reduces proinflammatory PLs and mediators while increasing DHA-containing PLs regardless of prior intrauterine conditions. Counteracting a proinflammatory hypercoagulable protein signature in young adult IUGR individuals through early diet intervention may be a feasible strategy to prevent developmentally programmed kidney damage in later life.


Assuntos
Ácidos Graxos Ômega-3 , Gravidez , Humanos , Animais , Ratos , Feminino , Ácidos Graxos Ômega-3/farmacologia , Dieta , Fosfolipídeos , Ácido Araquidônico , Retardo do Crescimento Fetal/metabolismo , Rim/metabolismo
6.
Nat Commun ; 13(1): 4352, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896539

RESUMO

Obesity is a pre-disposing condition for chronic obstructive pulmonary disease, asthma, and pulmonary arterial hypertension. Accumulating evidence suggests that metabolic influences during development can determine chronic lung diseases (CLD). We demonstrate that maternal obesity causes early metabolic disorder in the offspring. Here, interleukin-6 induced bronchial and microvascular smooth muscle cell (SMC) hyperproliferation and increased airway and pulmonary vascular resistance. The key anti-proliferative transcription factor FoxO1 was inactivated via nuclear exclusion. These findings were confirmed using primary SMC treated with interleukin-6 and pharmacological FoxO1 inhibition as well as genetic FoxO1 ablation and constitutive activation. In vivo, we reproduced the structural and functional alterations in offspring of obese dams via the SMC-specific ablation of FoxO1. The reconstitution of FoxO1 using IL-6-deficient mice and pharmacological treatment did not protect against metabolic disorder but prevented SMC hyperproliferation. In human observational studies, childhood obesity was associated with reduced forced expiratory volume in 1 s/forced vital capacity ratio Z-score (used as proxy for lung function) and asthma. We conclude that the interleukin-6-FoxO1 pathway in SMC is a molecular mechanism by which perinatal obesity programs the bronchial and vascular structure and function, thereby driving CLD development. Thus, FoxO1 reconstitution provides a potential therapeutic option for preventing this metabolic programming of CLD.


Assuntos
Asma , Hipertensão Pulmonar , Obesidade Pediátrica , Animais , Asma/metabolismo , Criança , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Hipertensão Pulmonar/genética , Interleucina-6/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Obesidade Pediátrica/complicações , Obesidade Pediátrica/metabolismo , Gravidez
7.
BMC Pulm Med ; 22(1): 183, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525938

RESUMO

BACKGROUND: Transforming Growth Factor-ß1 (TGF-ß1) is a genetic modifier in patients with cystic fibrosis (CF). Several single nucleotide polymorphisms (SNPs) of TGF-ß1 are associated with neutrophilic inflammation, lung fibrosis and loss of pulmonary function. AIM: The aim of this study was to assess the relationship between genetic TGF-ß1 polymorphisms and pulmonary disease progression in CF patients. Furthermore, the effect of TGF-ß1 polymorphisms on inflammatory cytokines in sputum was investigated. METHODS: 56 CF-patients and 62 controls were genotyped for three relevant SNPs in their TGF-ß1 sequence using the SNaPshot® technique. Individual "slopes" in forced expiratory volume in 1 s (FEV1) for all patients were calculated by using documented lung function values of the previous five years. The status of Pseudomonas aeruginosa (Pa) infection was determined. Sputum concentrations of the protease elastase, the serine protease inhibitor elafin and the cytokines IL-1ß, IL-8, IL-6, TNF-α were measured after a standardized sputum induction and processing. RESULTS: The homozygous TT genotype at codon 10 was associated with a lower rate of chronic Pa infection (p < 0.05). The heterozygous GC genotype at codon 25 was associated with lower lung function decline (p < 0.05). Patients with homozygous TT genotype at the promotor SNP showed higher levels of TNF-α (p < 0,05). Higher levels of TGF-ß1 in plasma were associated with a more rapid FEV1 decline over five years (p < 0.05). CONCLUSIONS: Our results suggest that polymorphisms in the TGF-ß1 gene have an effect on lung function decline, Pa infection as well as levels of inflammatory cytokines. Genotyping these polymorphisms could potentially be used to identify CF patients with higher risk of disease progression. TGF-ß1 inhibition could potentially be developed as a new therapeutic option to modulate CF lung disease.


Assuntos
Fibrose Cística , Fator de Crescimento Transformador beta1 , Códon , Fibrose Cística/genética , Citocinas/análise , Progressão da Doença , Genótipo , Humanos , Pulmão , Polimorfismo de Nucleotídeo Único , Fator de Crescimento Transformador beta1/genética
8.
Oxid Med Cell Longev ; 2022: 5784146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251477

RESUMO

Approximately 11.1% of all newborns worldwide are born preterm. Improved neonatal intensive care significantly increased survival rates over the last decades but failed to reduce the risk for the development of chronic lung disease (i.e., bronchopulmonary dysplasia (BPD)) and impaired neurodevelopment (i.e., encephalopathy of prematurity (EoP)), two major long-term sequelae of prematurity. Premature infants are exposed to relative hyperoxia, when compared to physiological in-utero conditions and, if needed to additional therapeutic oxygen supplementation. Both are associated with an increased risk for impaired organ development. Since the detrimental effects of hyperoxia on the immature retina are known for many years, lung and brain have come into focus in the last decade. Hyperoxia-induced excessive production of reactive oxygen species leading to oxidative stress and inflammation contribute to pulmonary growth restriction and abnormal neurodevelopment, including myelination deficits. Despite a large body of studies, which unraveled important pathophysiological mechanisms for both organs at risk, the majority focused exclusively either on lung or on brain injury. However, considering that preterm infants suffering from BPD are at higher risk for poor neurodevelopmental outcome, an interaction between both organs seems plausible. This review summarizes recent findings regarding mechanisms of hyperoxia-induced neonatal lung and brain injury. We will discuss common pathophysiological pathways, which potentially link both injured organ systems. Furthermore, promises and needs of currently suggested therapies, including pharmacological and regenerative cell-based treatments for BPD and EoP, will be emphasized. Limited therapeutic approaches highlight the urgent need for a better understanding of the mechanisms underlying detrimental effects of hyperoxia on the lung-brain axis in order to pave the way for the development of novel multimodal therapies, ideally targeting both severe preterm birth-associated complications.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Hiperóxia/complicações , Recém-Nascido Prematuro , Estresse Oxidativo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Oxigênio/metabolismo , Gravidez , Nascimento Prematuro , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
Semin Fetal Neonatal Med ; 27(1): 101245, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33994314

RESUMO

Adverse perinatal circumstances can cause acute kidney injury (AKI) and contribute to chronic kidney disease (CKD). Accumulating evidence indicate that a wide spectrum of perinatal conditions interferes with normal kidney development and ultimately leads to aberrant kidney structure and function later in life. The present review addresses the lack of mechanistic knowledge with regard to perinatal origins of CKD and provides a comprehensive overview of pre- and peri-natal insults, including genetic predisposition, suboptimal nutritional supply, obesity and maternal metabolic disorders as well as placental insufficiency leading to intrauterine growth restriction (IUGR), prematurity, infections, inflammatory processes, and the need for life-saving treatments (e.g. oxygen supplementation, mechanical ventilation, medications) in neonates. Finally, we discuss future preventive, therapeutic, and regenerative directions. In summary, this review highlights the perinatal vulnerability of the kidney and the early origins of increased susceptibility toward AKI and CKD during postnatal life. Promotion of kidney health and prevention of disease require the understanding of perinatal injury in order to optimize perinatal micro- and macro-environments and enable normal kidney development.


Assuntos
Injúria Renal Aguda , Doenças do Recém-Nascido , Doenças do Prematuro , Insuficiência Renal Crônica , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Feminino , Humanos , Recém-Nascido , Doenças do Prematuro/terapia , Rim , Placenta , Gravidez , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/prevenção & controle
10.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34446466

RESUMO

RATIONALE: Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. METHODS AND RESULTS: First, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. CONCLUSION: We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Hiperóxia/patologia , Interleucina-6/metabolismo , Pulmão , Macrófagos/metabolismo , Camundongos
11.
Cells ; 10(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34831169

RESUMO

Prematurely born infants often require supplemental oxygen that impairs lung growth and results in arrest of alveolarization and bronchopulmonary dysplasia (BPD). The growth hormone (GH)- and insulin-like growth factor (IGF)1 systems regulate cell homeostasis and organ development. Since IGF1 is decreased in preterm infants, we investigated the GH- and IGF1 signaling (1) in newborn mice with acute and prolonged exposure to hyperoxia as well as after recovery in room air; and (2) in cultured murine lung epithelial cells (MLE-12) and primary neonatal lung fibroblasts (pLFs) after treatment with GH, IGF1, and IGF1-receptor (IGF1-R) inhibitor or silencing of GH-receptor (Ghr) and Igf1r using the siRNA technique. We found that (1) early postnatal hyperoxia caused an arrest of alveolarization that persisted until adulthood. Both short-term and prolonged hyperoxia reduced GH-receptor expression and STAT5 signaling, whereas Igf1 mRNA and pAKT signaling were increased. These findings were related to a loss of epithelial cell markers (SFTPC, AQP5) and proliferation of myofibroblasts (αSMA+ cells). After recovery, GH-R-expression and STAT5 signaling were activated, Igf1r mRNA reduced, and SFTPC protein significantly increased. Cell culture studies showed that IGF1 induced expression of mesenchymal (e.g., Col1a1, Col4a4) and alveolar epithelial cell type I (Hopx, Igfbp2) markers, whereas inhibition of IGF1 increased SFTPC and reduced AQP5 in MLE-12. GH increased Il6 mRNA and reduced proliferation of pLFs, whereas IGF1 exhibited the opposite effect. In summary, our data demonstrate an opposite regulation of GH- and IGF1- signaling during short-term/prolonged hyperoxia-induced lung injury and recovery, affecting alveolar epithelial cell differentiation, inflammatory activation of fibroblasts, and a possible uncoupling of the GH-IGF1 axis in lungs after hyperoxia.


Assuntos
Hormônio do Crescimento/metabolismo , Hiperóxia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Lesão Pulmonar/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Feminino , Hiperóxia/complicações , Lesão Pulmonar/complicações , Masculino , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT5/metabolismo , Fatores de Tempo
12.
Front Med (Lausanne) ; 8: 667315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211985

RESUMO

Lung development is not completed at birth, but expands beyond infancy, rendering the lung highly susceptible to injury. Exposure to various influences during a critical window of organ growth can interfere with the finely-tuned process of development and induce pathological processes with aberrant alveolarization and long-term structural and functional sequelae. This concept of developmental origins of chronic disease has been coined as perinatal programming. Some adverse perinatal factors, including prematurity along with respiratory support, are well-recognized to induce bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease that is characterized by arrest of alveolar and microvascular formation as well as lung matrix remodeling. While the pathogenesis of various experimental models focus on oxygen toxicity, mechanical ventilation and inflammation, the role of nutrition before and after birth remain poorly investigated. There is accumulating clinical and experimental evidence that intrauterine growth restriction (IUGR) as a consequence of limited nutritive supply due to placental insufficiency or maternal malnutrition is a major risk factor for BPD and impaired lung function later in life. In contrast, a surplus of nutrition with perinatal maternal obesity, accelerated postnatal weight gain and early childhood obesity is associated with wheezing and adverse clinical course of chronic lung diseases, such as asthma. While the link between perinatal nutrition and lung health has been described, the underlying mechanisms remain poorly understood. There are initial data showing that inflammatory and nutrient sensing processes are involved in programming of alveolarization, pulmonary angiogenesis, and composition of extracellular matrix. Here, we provide a comprehensive overview of the current knowledge regarding the impact of perinatal metabolism and nutrition on the lung and beyond the cardiopulmonary system as well as possible mechanisms determining the individual susceptibility to CLD early in life. We aim to emphasize the importance of unraveling the mechanisms of perinatal metabolic programming to develop novel preventive and therapeutic avenues.

13.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34291109

RESUMO

RESEARCH QUESTION: Pulmonary disease progression in patients with cystic fibrosis (CF) is characterised by inflammation and fibrosis and aggravated by Pseudomonas aeruginosa (Pa). We investigated the impact of Pa specifically on: 1) protease/antiprotease balance; 2) inflammation; and 3) the link of both parameters to clinical parameters of CF patients. METHODS: Transforming growth factor-ß1 (TGF-ß1), interleukin (IL)-1ß, IL-8, neutrophil elastase (NE) and elastase inhibitor elafin were measured (ELISA assays), and gene expression of the NF-κB pathway was assessed (reverse transcriptase PCR) in the sputum of 60 CF patients with a minimum age of 5 years. Spirometry was assessed according to American Thoracic Society guidelines. RESULTS: Our results demonstrated the following: 1) NE was markedly increased in Pa-positive sputum, whereas elafin was significantly decreased; 2) increased IL-1ß/IL-8 levels were associated with both Pa infection and reduced forced expiratory volume in 1 s, and sputum TGF-ß1 was elevated in Pa-infected CF patients and linked to an impaired lung function; and 3) gene expression of NF-κB signalling components was increased in sputum of Pa-infected patients, and these findings were positively correlated with IL-8. CONCLUSION: Our study links Pa infection to an imbalance of NE and NE inhibitor elafin and increased inflammatory mediators. Moreover, our data demonstrate an association between high TGF-ß1 sputum levels and a progress in chronic lung inflammation and pulmonary fibrosis in CF. Controlling the excessive airway inflammation by inhibition of NE and TGF-ß1 might be promising therapeutic strategies in future CF therapy and a possible complement to cystic fibrosis transmembrane conductance regulator (CFTR) modulators.

14.
Am J Physiol Renal Physiol ; 321(1): F93-F105, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34056927

RESUMO

Intrauterine growth restriction (IUGR) due to an adverse intrauterine environment predisposes to arterial hypertension and loss of kidney function. Here, we investigated whether vascular dysregulation in renal interlobar arteries (RIAs) may contribute to hypertensive glomerular damage after IUGR. In rats, IUGR was induced by bilateral uterine vessel ligation. Offspring of nonoperated rats served as controls. From postnatal day 49, blood pressure was telemetrically recorded. On postnatal day 70, we evaluated contractile function in RIAs and mesenteric arteries. In addition, blood, urine, and glomerular parameters as well as renal collagen deposition were analyzed. IUGR RIAs not only showed loss of stretch activation in 9 of 11 arteries and reduced stretch-induced myogenic tone but also showed a shift of the concentration-response relation of acetylcholine-induced relaxation toward lower concentrations. However, IUGR RIAs also exhibited augmented contractions through phenylephrine. Systemic mean arterial pressure [mean difference: 4.8 mmHg (daytime) and 5.7 mmHg (night)], mean glomerular area (IUGR: 9,754 ± 338 µm2 and control: 8,395 ± 227 µm2), and urinary protein-to-creatinine ratio (IUGR: 1.67 ± 0.13 g/g and control: 1.26 ± 0.10 g/g) were elevated after IUGR. We conclude that male IUGR rat offspring may have increased vulnerability toward hypertensive glomerular damage due to loss of myogenic tone and augmented endothelium-dependent relaxation in RIAs.NEW & NOTEWORTHY For the first time, our study presents wire myography data from renal interlobar arteries (RIAs) and mesenteric arteries of young adult rat offspring after intrauterine growth restriction (IUGR). Our data indicate that myogenic tone in RIAs is dysfunctional after IUGR. Furthermore, IUGR offspring suffer from mild arterial hypertension, glomerular hypertrophy, and increased urinary protein-to-creatinine ratio. Dysregulation of vascular tone in RIAs could be an important variable that impacts upon vulnerability toward glomerular injury after IUGR.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Artéria Renal/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Retardo do Crescimento Fetal/fisiopatologia , Rim/efeitos dos fármacos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos
15.
Sci Rep ; 10(1): 22395, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33372189

RESUMO

Intrauterine growth restriction (IUGR) and low birth weigth (LBW) are risk factors for neonatal chronic lung disease. However, maternal and fetal genetic factors and the molecular mechanisms remain unclear. We investigated the relationship between LBW and lung function with Mendelian randomisation analyses and studied angiogenesis in a low protein diet rat model of IUGR. Our data indicate a possible association between LBW and reduced FEV1 (p = 5.69E-18, MR-PRESSO) and FVC (6.02E-22, MR-PRESSO). Complimentary, we demonstrated two-phased perinatal programming after IUGR. The intrauterine phase (embryonic day 21) is earmarked by a reduction of endothelial cell markers (e.g. CD31) as well as mRNA expression of angiogenic factors (e.g., Vegfa, Flt1, Klf4). Protein analysis identified an activation of anti-angiogenic mTOR effectors. In the postnatal phase, lung capillaries (< 20 µm) were significantly reduced, expression of CD31 and VE-Cadherin were unaffected, whereas SMAD1/5/8 signaling and Klf4 protein were increased (p < 0.01). Moreover, elevated proteolytic activity of MMP2 and MMP9 was linked to a 50% reduction of lung elastic fibres. In conclusion, we show a possible link of LBW in humans and reduced lung function in adulthood. Experimental IUGR identifies an intrauterine phase with inhibition of angiogenic signaling, and a postnatal phase with proteolytic activity and reduced elastic fibres.


Assuntos
Peso ao Nascer/genética , Retardo do Crescimento Fetal , Feto , Pneumopatias , Pulmão , Transdução de Sinais/genética , Animais , Modelos Animais de Doenças , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Feto/patologia , Feto/fisiopatologia , Humanos , Fator 4 Semelhante a Kruppel , Pulmão/patologia , Pulmão/fisiopatologia , Pneumopatias/genética , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Análise da Randomização Mendeliana , Ratos
16.
Eur Respir Rev ; 29(157)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33004528

RESUMO

The prenatal and perinatal environments can have profound effects on the development of chronic inflammatory diseases. However, mechanistic insight into how the early-life microenvironment can impact upon development of the lung and immune system and consequent initiation and progression of respiratory diseases is still emerging. Recent studies investigating the developmental origins of lung diseases have started to delineate the effects of early-life changes in the lung, environmental exposures and immune maturation on the development of childhood and adult lung diseases. While the influencing factors have been described and studied in mostly animal models, it remains challenging to pinpoint exactly which factors and at which time point are detrimental in lung development leading to respiratory disease later in life. To advance our understanding of early origins of chronic lung disease and to allow for proper dissemination and application of this knowledge, we propose four major focus areas: 1) policy and education; 2) clinical assessment; 3) basic and translational research; and 4) infrastructure and tools, and discuss future directions for advancement. This review is a follow-up of the discussions at the European Respiratory Society Research Seminar "Early origins of lung disease: towards an interdisciplinary approach" (Lisbon, Portugal, November 2019).


Assuntos
Pneumopatias , Doenças Respiratórias , Animais , Doença Crônica , Exposição Ambiental , Feminino , Humanos , Pulmão , Pneumopatias/diagnóstico , Pneumopatias/epidemiologia , Pneumopatias/etiologia , Gravidez
18.
Clin Transl Sci ; 13(6): 1065-1070, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32598577

RESUMO

Perinatal nutritional determinants known as metabolic programming could be either detrimental or protective. Maternal obesity in the perinatal period determines susceptibility for diseases, such as obesity, metabolic disorders, and lung disease. Although this adverse metabolic programming is well-recognized, the critical developmental window for susceptibility risk remains elusive. Thus, we aimed to define the vulnerable window for impaired lung function after maternal obesity; and to test if dietary intervention protects. First, we studied the impact of high-fat diet (HFD)-induced maternal obesity during intrauterine (HFDiu ), postnatal (HFDpost ), or perinatal (i.e., intrauterine and postnatal (HFDperi ) phase on body weight, white adipose tissue (WAT), glucose tolerance, and airway resistance. Although HFDiu , HFDpost , and HFDperi induced overweight in the offspring, only HFDperi and HFDiu led to increased WAT in the offspring early in life. This early-onset adiposity was linked to impaired glucose tolerance in HFDperi -offspring. Interestingly, these metabolic findings in HFDperi -offspring, but not in HFDiu -offspring and HFDpost -offspring, were linked to persistent adiposity and increased airway resistance later in life. Second, we tested if the withdrawal of a HFD immediately after conception protects from early-onset metabolic changes by maternal obesity. Indeed, we found a protection from early-onset overweight, but not from impaired glucose tolerance and increased airway resistance. Our study identified critical windows for metabolic programming of susceptibility to impaired lung function, highlighting thereby windows of opportunity for prevention.


Assuntos
Adiposidade/fisiologia , Peso Corporal/fisiologia , Pulmão/fisiopatologia , Obesidade Materna/complicações , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Tecido Adiposo Branco/metabolismo , Resistência das Vias Respiratórias/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Masculino , Camundongos , Obesidade Materna/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores de Tempo
19.
Clin Sci (Lond) ; 134(7): 921-939, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32239178

RESUMO

Maternal obesity determines obesity and metabolic diseases in the offspring. The white adipose tissue (WAT) orchestrates metabolic pathways, and its dysfunction contributes to metabolic disorders in a sex-dependent manner. Here, we tested if sex differences influence the molecular mechanisms of metabolic programming of WAT in offspring of obese dams. To this end, maternal obesity was induced with high-fat diet (HFD) and the offspring were studied at an early phase [postnatal day 21 (P21)], a late phase (P70) and finally P120. In the early phase we found a sex-independent increase in WAT in offspring of obese dams using magnetic resonance imaging (MRI), which was more pronounced in females than males. While the adipocyte size increased in both sexes, the distribution of WAT differed in males and females. As mechanistic hints, we identified an inflammatory response in females and a senescence-associated reduction in the preadipocyte factor DLK in males. In the late phase, the obese body composition persisted in both sexes, with a partial reversal in females. Moreover, female offspring recovered completely from both the adipocyte hypertrophy and the inflammatory response. These findings were linked to a dysregulation of lipolytic, adipogenic and stemness-related markers as well as AMPKα and Akt signaling. Finally, the sex-dependent metabolic programming persisted with sex-specific differences in adipocyte size until P120. In conclusion, we do not only provide new insights into the molecular mechanisms of sex-dependent metabolic programming of WAT dysfunction, but also highlight the sex-dependent development of low- and high-grade pathogenic obesity.


Assuntos
Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Adiposidade , Dieta Hiperlipídica , Metabolismo Energético , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Adipócitos Brancos/patologia , Adipogenia/genética , Tecido Adiposo Branco/patologia , Tecido Adiposo Branco/fisiopatologia , Adiposidade/genética , Fenômenos Fisiológicos da Nutrição Animal , Animais , Tamanho Celular , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Hipertrofia , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Estado Nutricional , Obesidade Materna/genética , Obesidade Materna/patologia , Obesidade Materna/fisiopatologia , Gravidez , Caracteres Sexuais , Fatores Sexuais , Transdução de Sinais , Fatores de Tempo
20.
J Mol Med (Berl) ; 98(2): 279-289, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31912169

RESUMO

Intrauterine growth restriction (IUGR) and low birth weight are risk factors for childhood asthma. Atopic march describes the progression from early dermatitis to asthma during life. Since inflammatory signaling is linked to increased airway resistance and lung remodeling in rats after IUGR, we queried if these findings are related to skin inflammatory response. Firstly, we induced IUGR in Wistar rats by isocaloric protein restriction during gestation. IUGR rats showed lower body weight at postnatal day 1 (P1), catch-up growth at P21, and similar body weight like controls at P90. At P1 and P90, mRNA of inflammatory as well as fibrotic markers and number of skin immune cells (macrophages) were increased after IUGR. Skin thymic stromal lymphopoietin (TSLP) mRNA at P1 and serum TSLP at P1 and P21 were elevated in IUGR. Moreover, IUGR impaired transepidermal water loss at P21 and P90. IUGR induced higher. Secondly, the increase of TEWL after Oxazolone treatment as a model of atopic dermatitis (AD) was greater in IUGR than in Co. Our data demonstrate an early inflammatory skin response, which is linked to persistent macrophage infiltration in the skin and impaired epidermal barrier function after IUGR. These findings coupled with elevated TSLP could underlie atopic diseases in rats after IUGR. KEY MESSAGES: • The present study shows that IUGR increases macrophage infiltration and induces an inflammatory and fibrotic gene expression pattern in the skin of newborn rats. • Early postnatal inflammatory response in the skin after IUGR is followed by impaired epidermal barrier function later in life. • IUGR aggravates transepidermal water loss in an experimental atopic dermatitis model, possibly through elevated TSLP in skin and serum. • Early anti-inflammatory treatment and targeting TSLP signaling could offer novel avenues for early prevention of atopic disorders and late asthma in high-risk infants.


Assuntos
Citocinas , Dermatite Atópica , Retardo do Crescimento Fetal , Animais , Animais Recém-Nascidos , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Dermatite Atópica/sangue , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Feminino , Macrófagos/imunologia , Ratos Wistar , Pele/imunologia , Pele/metabolismo , Linfopoietina do Estroma do Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA